Что такое среднее арифметическое чисел

Картинка Что такое среднее арифметическое чисел

Средне-арифметическое – что это значит?

Не только в различных математических науках, но и в повседневной жизни возникают случаи, когда нужно рассчитать средний показатель чего-либо. Например, среднюю стоимость огурцов на рынке, средний рост ребенка, среднюю стоимость проживания в гостинице и пр.

Всему этому уже давно было придумано научное название – «среднее арифметическое». Данный показатель активно применяется в статистике для обобщения результатов. К примеру, средний возраст для рождения детей, средний возраст смерти среди мужчин и женщин, средняя заработная плата по регионам и по России в целом.

К примеру, при принятии закона о повышении пенсионного возраста, власти как раз исходили из среднего возраста смерти в нашей стране.

Разберемся, что же представляет собой данный показатель.

Среднее арифметическое – это усредненный показатель всех имеющихся значений. Для его расчета необходимо суммировать все участвующие в операции числа, после чего разделить на их общее количество.

К примеру, в 2017 году полное среднее образование получили дети разных возрастов : 16, 17 и 18 лет. Среднее арифметическое будет рассчитано, как сумма всех возрастов, деленная на три. Итого средний возраст ребёнка, окончившего 11 класс, составил 17 лет.

В данном примере показан примитивный расчет на примере трех детей. По факту суммировать нужно все данные, имеющиеся в наличии. То есть если речь будет идти о пяти детях, то мы суммируем их возраст, к примеру, 17+17+18+16+17 и делим полученное на пять.

Аналогично производится расчет любого среднего арифметического для какой-либо операции. То есть, если, например, нужно подсчитать средний возраст матерей, родивших первого ребенка в 2017 году, то сначала нужно будет суммировать все показатели возраста, после чего поделить на общее число родительниц.

То есть в общем виде формулу можно представить так:

Среднее арифметическое = (сумма всех имеющихся значений)/общее число значений, что участвуют в операции.

Таким образом, расчет довольно прост, даже для школьников. Затруднения могут возникнуть лишь по причине большого количества респондентов, участвующих в операции.

Важно понимать, что средний показатель не является просто числом. Он имеет особый физический смысл, который уже долгие годы применяется в реальном мире на практике.

Неправильным было бы использование среднего арифметического лишь на бумаге, в тетради или в компьютерных программах. В противном случае, можно получить множество бессмысленных и просто нереальных значений.

Средних, на самом деле, существует несколько. Однако в каждом случае, только одно из них верное. В каждой из операций, нужно использовать только тот вид среднего, который необходим, иначе будет допущена огромная ошибка.

Какие виды средних используются на практике? Самые распространенные средние – это:

  1. Среднее арифметическое;
  2. Среднее геометрическое;
  3. Среднее гармоническое.

Эти значения наиболее часто используются, как в повседневной жизни, так и в науках. Наиболее часто, конечно же, рассчитывается первый показатель.

Зачастую данный показатель в реальных условиях применяется и рассчитывается неверно. Почему так происходит? Фактически, базой среднего арифметического выступает применение закона о больших числах. Кроме того, применяется и допущение, согласно которому исходная величина является нормально определенной.

Это означает, что вокруг представленного в ряде значений, имеется наиболее частое отклонение в какую-либо сторону. То есть. В большую или меньшую. Например, в ряду чисел 8,8,9,8,9,8,8, отклонение будет в меньшую сторону, так как больше восьмерок. А в ряде: 17,17, 20,20,20,20,20, отклонение, наоборот, будет в большую сторону, так как в этом случае больше все же «двадцаток».

Однако в большинстве случаев, такие отклонения являются небольшими и обычно равными по вероятности. Суть проблемы в том, что в бизнесе, как и в реальной жизни, нормальность распределения на практике можно встретить крайне редко.

То есть, к примеру, время обслуживания одного клиента, время, которое клиенту ожидают этого обслуживания, сумма, на которую они потом заключат контракт, рыночная доля,  прирост доходов и прочее, являются теми показателями, что не распределяются равномерно и нормально. Их усреднять в некоторых случаях нежелательно именно при помощи среднего арифметического. Потому что это было бы неправильно.

На практике нормальность распределения часто можно встретить при наличии большого количества значений, начиная с сотен и тысяч. К примеру, количество обращений в техническую поддержку крупной компании может быть распределено нормально, как на бумаге, так и фактически.

Тем не менее, только лишь количества не будет достаточно, ведь в каждой конкретной ситуации нужно следить и за правильностью распределения. Только так можно будет правильно в итоге рассчитать значение среднего арифметического.